
Warpcore
Nick Gregory, Josh Hofing



Overview
● Eventual goal: to be a Cyber Reasoning System (CRS)

○ Automatically find bugs in programs
○ Maybe even exploit them

● For this semester
○ Lay the groundwork (wrappers, core abstractions, etc.)
○ Create a concrete executor (an emulator) for a small ARM program



Parts
● ELF parser
● Intermediate Language (IL)
● ARM assembly -> IL transpiler
● SMT abstraction
● Executor



ELF Parser/Loader
● Now the second ELF loader I’ve written…
● Just needs to be able to extract data into the correct vaddrs
● Don’t need linking, relocations, etc. (yet)
● Not very complex



IL
● Custom levelled, tree-based IL (think Binja Lifted IL)
● We don’t want to have to lift the entire binary at startup

○ Addresses are a pair (level, addr), so you can jump between levels, letting you just insert 
jumps to the unlifted (“native”) level for unlifted code

○ Binaries are large and we’re white-box fuzzing, so we won’t hit most of the code most of the 
time

● This adds a lot of required heavy-lifting to the execution engine
○ It needs to understand how to lift new code as we run, not screw it up, etc
○ But we think that it will be a win
○ We view the lifted code as a cache which should be basically freely dumbable

● A huge part of the idea is that we can “JIT” large parts of IL to make execution 
faster



ARM -> IL Transpiler
● ARM released a machine-readable specification describing instruction 

semantics
● We transpile the Architecture Specification Language (ASL) code into C++ IL 

operations
● Unnecessary language constructs complicate the transpiler...
● ~90% done though!



ARM -> IL Transpiler - Future Work
● Move to Sail: https://github.com/rems-project/sail
● Much saner language
● Also already has definitions of MIPS, ARM and (most) x86(-64) instructions!

https://github.com/rems-project/sail


SMT Abstractions
● Want the ability to use different symbolic execution engines

○ Maybe even multiple in a single run…

● C++ wrapper around SMT-LIB abstractions
● And code to actually run the SMT solver and get results back



Executor
● As mentioned, goal for this semester is concrete execution of a small ARM 

binary
● No need for symbolic memory yet
● Concrete executor supports almost all of the IL
● And just enough aarch64 Linux syscalls to do “Hello, World!”
● Too bad nobody has written a machine-readable Linux syscall specification



Questions?


