Warpcore
Nick Gregory, Josh Hofing



Overview

e Eventual goal: to be a Cyber Reasoning System (CRS)
o Automatically find bugs in programs
o Maybe even exploit them

e For this semester

o Lay the groundwork (wrappers, core abstractions, etc.)
o Create a concrete executor (an emulator) for a small ARM program



Parts

ELF parser

Intermediate Language (IL)
ARM assembly -> IL transpiler
SMT abstraction

Executor



ELF Parser/Loader

Now the second ELF loader I've written...

Just needs to be able to extract data into the correct vaddrs
Don’t need linking, relocations, etc. (yet)

Not very complex



IL

Custom levelled, tree-based IL (think Binja Lifted IL)

We don’t want to have to lift the entire binary at startup
o Addresses are a pair (level, addr), so you can jump between levels, letting you just insert
jumps to the unlifted (“native”) level for unlifted code
o Binaries are large and we’re white-box fuzzing, so we won'’t hit most of the code most of the
time
This adds a lot of required heavy-lifting to the execution engine
o It needs to understand how to lift new code as we run, not screw it up, etc
o But we think that it will be a win
o We view the lifted code as a cache which should be basically freely dumbable

A huge part of the idea is that we can “JIT” large parts of IL to make execution
faster



ARM -> IL Transpiler

e ARM released a machine-readable specification describing instruction
semantics

e \We transpile the Architecture Specification Language (ASL) code into C++ IL
operations

e Unnecessary language constructs complicate the transpiler...

e ~90% done though!



ARM -> |L Transpiler - Future Work

e Move to Sail: https://github.com/rems-project/sail
e Much saner language
e Also already has definitions of MIPS, ARM and (most) x86(-64) instructions!



https://github.com/rems-project/sail

SMT Abstractions

e \Want the ability to use different symbolic execution engines
o Maybe even multiple in a single run...

e C(C++ wrapper around SMT-LIB abstractions
e And code to actually run the SMT solver and get results back



Executor

e As mentioned, goal for this semester is concrete execution of a small ARM
binary

No need for symbolic memory yet

Concrete executor supports almost all of the IL

And just enough aarch64 Linux syscalls to do “Hello, World!”

Too bad nobody has written a machine-readable Linux syscall specification



Questions?



