
Be Kind, Please Rewind
Adventures in creating a macOS record/replay debugger

LEGAL

This happened at day job, but stuck with us. BTW we work at google, but this talk
does not necessarily represent the companies views or opinions. Happy now legal?

PETE: Before we go further we should address the elephant in the room. This talk is
about our attempt at constructing a record replay debugger and the challenges and
experiments we did along the way, we’re not releasing a tool today. The effort is
ongoing, and we have many pieces assembled together but its not ready for
consumption just yet.

Also brief whoami

Why?

Thread 2 Crashed:: Dispatch queue:
com.apple.NSXPCConnection.user.com.google.santa.metricservice.63335
0 libobjc.A.dylib objc_msgSend + 29
1 Foundation -[NSError copyWithZone:] + 107
2 santametricservice -[SNTMetricHTTPWriter write:toURL:error:] +
1372
3 santametricservice -[SNTMetricService exportForMonitoring:] + 475
…

 NSURLSessionDataTask *task = [_session
 dataTaskWithRequest:request
 completionHandler:^(NSData *_Nullable data, NSURLResponse *_Nullable response,
 NSError *_Nullable err) {
 …
 *stop = YES;

Why? Dangling stack pointer in a timer-based callback which fire a single bit into a
stack frame in which another thread would be running. “Physically impossible” bugs
manifesting.

Record/Replay: Prior Art

● PANDA (2020)
○ Whole system!

● WinDbg (2017)
● RR (2014)
● Scribe (2010)
● Jockey (2005)
● Flashback (2004)
● ReTrace
● QuickRec
● Revirt (1999)

○ Whole system!

This is a super old idea. There have been countless talks and papers over the years
on this idea of record and replay.

Record/Replay: Prior Art

● PANDA (2020)
○ Whole system!

● WinDbg (2017)
● RR (2014)
● Scribe (2010)
● Jockey (2005)
● Flashback (2004)
● ReTrace
● QuickRec
● Revirt (1999)

○ Whole system!

None of them support macOS / XNU.

Record / Replay Basics & Goals

PETE: Basically the idea is that if we can record all inputs and sources of
randomness into a process during its execution into a log.

PETE: Then if we replay an application reading the inputs from the log instead of the
real system we should get the same execution again which would let you debug hard
problems. If we know we can get the same exact execution again we can set
breakpoints or watches to triage bugs.

Aside: the bug we

Goals for our tool

● Only focusing on user-space programs

● Easy to use and deploy – needs to support a stock MBP with/M1,M2

● No DBI / code instrumentation

● Small investment of effort to maintain

● Fast enough to use on real programs

Like RR we’d like to build something that’s usable. We’re only looking for something
that’s easy to use and debug. In our case we get bugs across a large number of
machines and need a user to run the tool. Additionally Apple’s kicking everyone out of
the kernel, so we don’t want to use a KEXT. Ideally long term this should lead to a
lower effort to maintain and ultimately we need this to be good enough to work on real
programs that we did not compile ourselves.

RR’s Requirements for User-Space Replay

Requirement Does macOS Meet This Out
of the Box?

Ability to Record Syscalls ✅
Ability to Record Syscalls
Outside Libc

Ability to determine if a Syscall
is blocking 🟡
Ability to Intercept Signals ✅

About 3/7 requirements aren’t easily met. Specifically I mean that there’s an obvious
way to do this not that something can’t be done e.g. direct syscalls I’m talking about a
seccomp or a ptrace sysemu.

RR’s Requirements for User-Space Replay (Part 2)

Requirement Does macOS Meet This Out
of the Box?

Ability to pin a process to a
single core (cpuset)

Ability to trap non-deterministic
instructions

Ability to access reliable and
deterministic hardware
performance counters

So it’s not hopeless, but the 4 strikes and a yellow

Recording

Handoff to Nick

Recording: It’s not that simple…

● Mach traps
○ Close enough to syscalls, no big deal
○ … except for a few traps which don’t have normal hook points

● Signals
○ The outside world can “asynchronously” poke the target

● mmap
● Multithreading

○ Well-formed programs shouldn’t have issues (data races), but…
○ Aside: thanks Apple for not giving us cpuset - no easy way to pin to one core

● Commpage
○ Similar to vvar (normally accessed via vDSO) on Linux

● Non-deterministic instructions – mrs x0, cntvct_el0

In addition to syscalls…

No normal hook points: E.g. gettime

Mmap: both shmem, file writing, kernel filling page (e.g. mach traps), etc.

cntvct_el0 = counter

Recording: Syscalls & Traps

Recording: Syscalls on macOS

● 3 types – BSD, mach traps, machine dependent

● Need pre- and post-hooks for data gathering

These are our requirements

Thanks Apple

● Gutted ptrace implementation – no sysemu

● No seccomp-bpf equivalent

Basically no equivalent way to intercept syscalls, traps, etc. to another userland
program

One Option: dtrace

● dtrace hooks, storage, etc.

● Not enough to capture arbitrary syscall data though
○ No conditionals for example - not possible to switch in “multiplexed” syscalls

● Strictly async
○ How to pause so userland can get what it needs?
○ Luckily there are “destructive” actions

■ signal(STOP)
■ stop() - mach_task_suspend

○ These only take effect after the syscall is processed though…

One Option: dtrace

dtrace also has a nasty habit of panicking the system at least in recent kernels

Seatbelt / Sandbox?

● Seatbelt is wired up into every syscall maybe?

● Trace mode for recording
○ Not a good API, minimal log entries

● No way to not kill on replay

There is a trace mode (not just kill on violation). The issue here is the ability to record
and replay syscalls values - we can’t do arbitrary data fetches

Interposing / Dynamic Interposing / Symbol Rebinding

● macOS is a BSD!
○ ABI compatibility is at the libc level

not the kernel
○ Can we just hook libsystem_kernel?

● We can interpose on the symbol
○ Could use fishhook

● Doesn’t catch direct syscalls…

Go got bitten by the syscall numbers changing a while back. Direct syscalls should
now be rare, but nothing says syscalls have to come from libSystem

https://github.com/facebook/fishhook

Recording: Dealing with Data Races

Handoff to Pete

Pete: I copied this diagram from the RR talk as I think it illustrates a data race pretty
nicely. Scheduling with multiple threads running in parallel becomes yet another
source of non-determinism. We can have a read after write or a write after write
instance in which the schedule ordering will make some bugs appear or not. If the
cores are clocked differently this can exacerbate the issue. Its something we need to
deal with as a lot of macOS apps often use GCD so it’s really common to have
multiple threads. So how does RR handle this?

How Does RR Handle This?

● Only runs one thread to run at a time
(non-parallel)

● Limits threads to the same core using
processor affinity

● Schedules threads and records the
choice in the log (can mixup order on
replay to find bugs)

Pete: RR simply avoids this problem. They then deterministically schedule threads
and record the choices their of which thread ran since this is now a non-deterministic
factor that must be accounted for. In the event that they picked wrong and can’t
reproduce the bug RR has a chaos mode which will randomize the ordering here to
try and repro the bug.

This also has the benefit of instructions like CPUID, will return the same values.

Thread scheduling on macOS not guaranteed

● No cpu_set(3)

● Can we use THREAD_AFFINITY_POLICY?

Pete: So how can we limit the number of cores our user space program runs on? Can
we just pin threads to cores on macOS?

P-cores and E-cores

From: https://eclecticlight.co/2022/01/13/scheduling-of-processes-on-m1-series-chips-first-draft/

We also have to contend with the different types of cores on apple silicon, and while
we can hint to the kernel which one we want with QOS, we can only prefer P or E, not
a specific P or E

Can we shutdown cores?

● In the old OS X internals books there was an example showing how to
shutdown cores using processor_exit

● Can we just limit ourselves to a core?

[user@watervile ~]
$ sudo ./print_processors
Password:
Number of processors: 12
CPU: slot 0(master)
CPU: slot 1
//snipped.
CPU: slot 11
[user@waterville ~]
$ sudo ./processor_xable
processor_exit: (os/kern) service not supported

Pete: In the old Amit Singh book, he had an example where you first print out the
cores using the host_port and host_priv ports then had you in a second example
shutdown the last core. Can we do the same?

Pete: Nope

So in order to be able to record and replay we need to find a means of limiting the
number of cores a process is running on

You could

Recording: Asynchronous Events

Signals & Scheduling

● Need to be able to intercept signals and
record register state of where the signal
was delivered or program interrupted for
scheduling.

● Need to know where you are in the
programs execution so you can inject
your signals in the right place during
replay

● Replay: when using something interrupt
driven must account for late firing
interrupts

PETE: Basically we need to record exactly where and when an signal or interrupt
happened. This is a superhard problem. If we can do this then we can handle
scheduling as if we injected an interrupt at a given time.

Using PMUs from macOS

● RR works on Asahi Linux and uses
the PMU can we?
○ Uses the count of retired

conditional branches as
progress indicator (0x8c)

○ Can reset for an interrupt when
replaying

● macOS does not have an interface
for setting PMUs from EL0

[user@waterville ~/src/pmu_counters]
$ sudo ./counter_test
loaded db: a15 (Apple A15)
number of fixed counters: 2
number of configurable counters: 8
counters value:
 cycles: 41865278
 instructions: 91998218
 branches: 21071096
 branch-misses: 53779
[user@waterville ~/src/pmu_counters]
$ sudo ./counter_test
loaded db: a15 (Apple A15)
number of fixed counters: 2
number of configurable counters: 8
counters value:
 cycles: 41946121
 instructions: 92093331
 branches: 0
 branch-misses: 0

PETE: Can we access the in macOS PMUs? This is available from kperf and kpc

● Sorta – Crashes!
● Unreliable scheduling
● No way to set interrupts for replay

panic(cpu 5 caller 0xfffffe0017c66cd8): kperf: timer fired
at 2793246644070, but sampling is disabled
@kptimer.c:328
Debugger message: panic

PETE: It’s also pretty common to get a delayed interrupt firing when you’re turning
these on and off again in XNU which can result in a kernel panic. See me after the
talk if you want to watch me make my mac angry.

PETE: So what do we do if we don’t have the PMU? Not having access to a PMU is
an old problem, that’s been solved for a while. In this case the classic solution
proposed is to reserve a general purpose register and rewrite the branches so that
they decrement the register, when taken.

While recording you first set the counter to the max uint64 value. then when you get a
signal you simply record the counter value and the register state into the log then
reset and repeat, no need to worry about underflow because. During replay you set
the counter to

Options without PMU or DBI

● We can count the number of syscalls and then
single step forward then inject the signal (set a
breakpoint and invoke the signal handler)

● Do what scribe(10) does and simply deliver the
signal at the next syscall and replay interrupted
syscall (special case for signals like SIGSEGV
that originate in user space.)

● If we need to go further than say 10,000
instructions we can use an high res clock (e.g.
pacman) to trap back to us

If we have to use the timer we simply set it lower than we need and single step

Darling

So after running into all of these issues we looked around to see if others had
implemented something similar to what we were hoping for and thats when we found
darling.

Darling

● “A Translation Layer that lets you run
macOS software on Linux”

● Uses a custom loader, interposing of
libsystem_kernel, a lot of duct tape
code and userland a server to translate
macOS syscalls to Linux syscalls

● Can run software like xcode on Linux

PETE: We looked around for something

High Level: How Darling Works

Essentially they use a custom loader to bootstrap dyld in their own process address
space and then call back into their hooked libsystem_kernel. For things that need
mach_traps and callback notification etc. they use a user land server they talk to over
a unix socket. Together this produces a workable solution on linux for a larger number
of command line programs.

Warpspeed

Handoff to Nick

Because everything has to have a good codename

Warpspeed

● Isolate target inside a VM with 1 core
● Proxy syscalls
● Both signal slide + SoftPMU to approximate program progression
● Manual thread scheduling

NB this is not full macOS in a VM, just the program at EL0
… one of the key things that enables this is Hypervisor.framework

Hypervisor.framework

● Super light-weight framework
○ Little as possible in the kernel

● Usage:
○ Create a VM
○ Map memory (from hypervisor address space)
○ Create vCPU
○ Set regs
○ Run
○ Trap out to userland on VM exit
○ GOTO 5
○ That’s it

Map memory from the hypervisor’s VA space, not a new address space. Similar to
KVM, but even simpler in ways

Warpspeed: VM/Hypervisor

● Use modified darling’s loader (mldr) to map in target program and dyld
● Load in shared cache
● “Share” an address space with the guest

○ 1:1 map the regions of the loaded target into VM at the same virtual address
● Trap out and forward syscalls

● All based on Hyperpom (Rust!)

● Lets us control the execution of the program perfectly
○ Only have one virtual core
○ Manually schedule threads

This is a VM, if there is any way to get info from the host without trapping that is a bug
in the framework
Load in shared cache != fake out all of what dyld does.
Dyld is not a simple thing, as you’ll see shortly even a simple program ends up doing
hundreds of syscalls as part of dyld init
Hyperpom is a research fuzzer for m1, provided the base for MMU setup, has
snapshotting, etc.
Of course it’s rust, we’re hipsters from Brooklyn
Perfect control even without ptrace

Warpspeed: VM/Hypervisor

https://www.youtube.com/watch?v=Td5cQ6kGP5g

http://www.youtube.com/watch?v=Td5cQ6kGP5g

dyld

If you want to get a sense of how complex dyld (and any program pre-init) is, this is
taken from Levin’s *OS internals book

Warpspeed: Unimplemented Features

● LLDB/GDB interface
● Optimizing/compressing log format
● The hypervisor itself is responsible for performing the syscalls

○ What happens on a blocking call?
○ Could deadlock on mutex wait

● Handling blocking syscalls
○ Manually enumerate and perform some non-blocking alternative
○ or…

We obviously want this to be usable under a debugger, so we need some way to
interface with lldb/gdb to receive rwatch, rstep, etc.
Log format is simple right now

https://www.youtube.com/watch?v=IXeS8OCGYUM

http://www.youtube.com/watch?v=IXeS8OCGYUM

Warpspeed: VM/Hypervisor

Warpspeed: VM/Hypervisor

Totally totally why this is called warpspeed (seq diagram)

Warpspeed: Outstanding Issues

● MMIO
● Entitlements

RR takes the approach of “wontfix” for MMIO. Entitlements is a real unanswered
question though. Hardened runtime isn’t an issue though since we do our own loading

That’s Only Half the Battle

Replay

● If you can figure out recording, replay is much simpler
○ Set breakpoints where something happened in recording
○ Mimic side-effects
○ Continue

● SoftPMU needed here in case we end up with an async event in a hot loop

Replay: GUI

● UI is core to macOS
● How can we “pass through” events on replay to the OS (to see the app

running) while not introducing nondeterminism?
○ In theory it will “just work”
○ No (easy) way to show the UI on replay though

Not part of the original motivation, but of course people are going to wonder
The replay should behave as expected since the mach ports don’t actually get
created and messages get put down just as they did in the recording
But of course you won’t see anything

Basically: TODO

Recap

● Tool is WIP
● But principles work!
● Stay posted for more

Questions?

