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Introduction
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What Are We Covering?

Hardware Performance Counters - what and why

Prior work - using counters to detect Spectre/Meltdown
This work

a. Exploring undocumented counters

b. Training models on undocumented counters

c. Detection capabilities with trained models

d. Interpretation of results

Future work



Main Question

Can we detect exploits using undocumented

hardware performance counters on Intel
CPUs?



Hardware Performance Counters



Hardware Performance Counters

A.k.a. Performance Monitoring Counters

Hardware devices that count specific events across different
Performance Monitoring Units (PMUs)

Usually used to debug program/system slowness

o Measuring things like cache misses, branch mispredicts, port
usage, etc.



Hardware Performance Counters

WE'll be focusing on the "CPU" PMU today
Most Intel CPUs let you pick a few of these counters to monitor at
once (per core)
Specified as event_id, umask
o event_id: broad category of event (cache, branches, etc.)
o umask: specific counter (level 1 cache misses filled by level 2)



Hardware Performance Counters

On Linux, interact with counters through the "perf" subsystem
(and CLI)

For example:

o perf stat -e cache-misses -- /bin/ls
o perf stat -e "cpu/event=0xef,umask=0xf4/" -- /bin/ls
Multiple sampling methods

o Time/Ticker
o Count threshold
o Entire program run



A Couple of Years Ago...



Background: Spectre and Meltdown

e CPU-level vulnerabilities that (ab)use processor speculation
o Processor guesses what code should be run before it knows
for sure
e Many ways to "do bad things"
o Speculate over a bounds check (Spectre v1)
o Speculate through a bad return address (Spectre RSB)
o Speculation reading a disabled FPU (LazyFP)
o And more!



Background: Flush+Reload

One possible technique for exfiltrating data inside speculative
execution
Consistent, easy (with asm access)
Basic idea:
o (CL)FLUSH eachlinein a"timing" array
o Have speculative execution load one of the lines
o Subsequent attacker loads will find one line faster than the
others



Flush+Reload Hypothetical Example




Flush+Reload Hypothetical Example

if (slow_to_load_usually_true) {




Flush+Reload Hypothetical Example

if (slow_to_load_usually_true) {

a = out[secret_number & 0x3];




Flush+Reload Hypothetical Example

if (slow_to_load_usually_true) {

a = out[secret_number & 0x3];

Cm—




Flush+Reload Hypothetical Example

if (slow_to_load_usually_true) {

- _




Flush+Reload Hypothetical Example

for (int i = 0; i < 4; i++) {
uint64_t start = rdtsc();
int a = cache[i];
uint64_t end = rdtsc();

if (end-start < threshold) {
secret = 1;
}
}




Flush+Reload Hypothetical Example

for (int 1 = 0; i < 4; i++) {
uint64_t start = rdtsc();
int a = cache[i];
uint64_t end = rdtsc();

if (end-start < threshold) {
secret = 1i;
'
}

1=0 SLOW




Flush+Reload Hypothetical Example

for (int 1 = 0; i < 4; i++) {
uint64_t start = rdtsc();
int a = cache[i];
uinté4_t end = rdtsc(); _
if (end-start < threshold) #=1 SLOW
secret = 1;

}




Flush+Reload Hypothetical Example

for (int 1 = 0; i < 4; i++) {
uint64_t start = rdtsc();
int a = cache[i]; ACTIVE
uinté4_t end = rdtsc();
if (end-start < threshold) {

secret = 1] VAR Y I ACTIVE

ACTIVE

}




Spectre and Meltdown Detections

Developed detections shortly after public announcement of the
bugs (early 2018)
Used 3 perf counters as features
o Cache misses
o Cachereferences
o Branch misses
First two form "cache miss ratio"
Third normalizes to the complexity of the program
Sampled on a 100ms ticker
Successfully detects all public proof-of-concepts we've tried



Spectre and Meltdown

Support Vector Machine - Decision Function visualized

Test Data | SVM-RBF kernel | Features: Cachemiss, Cachemiss-Branchmiss
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Support Vector Machine

Features: Cache miss ratio, Cache miss - Branch miss ratio

SVM: Cachemiss Branchmiss Ratio | Train accuracy: 0.9997730882686635
SVM: Cachemiss Branchmiss Ratio | Test accuracy: 0.9995393827729157
SVM: Cachemiss Branchmiss Ratio | AUC: 0.9761904761904762

ROC curve | SVM: Cachemiss Branchmiss Ratio
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False positive rate

Model accuracy (%) |fpr fnr sensitivity (%) |specificity (%)
1_Capsule8_deterministic 99.8618148 0 0.142857 85.7142857 100
2 SVM 99.9539383 0 0.047619 95.2380952 100
5_Ensemble_cap8det_svm 100 0 0 100 100




Spectre and Meltdown

e This detection can be easily defeated though!
e Mix-in cache friendly code into the proof-of-concept



Spectre and Meltdown in Hiding

// stuff that will be read in a cache-friendly way to evade detection
unsigned long long stuff[65536];

// do some stuff that's really cache-nice to throw off detection
register unsigned long long ctr = 0;
for (register int round = ©; round
register unsigned long long *p
sizeof(stuff[0]))];
ctr += *p;
*p = ctr,;

80000000 ; round++) {
&stuff[round % (sizeof(stuff) /

I A



Our Research



Hardware Performance Counters

Space for 256*256 counters
Number of documented counters (and what they count) varies per
microarchitecture

o Only afew hundred documented on most microarchitectures
What if we read all of them (even the undocumented ones)?
Turns exploit detection into a blackbox ML problem



Counter Selection

e Ran four programs and sequentially gathered all counters 10
times
o Optimized/minified _exit(0) ;
o Scikit benchmark
o Spectrev4
o Spectre v4 in Hiding



Counter Selection (cont’d)

Removed always zero counters

Removed counters that had a difference between scikit
benchmark and spectre v4 less than 95%

Removed counters that differed more than 5% between spectre
v4 and spectre v4 "in hiding"

Left with 81 counters
Interestingly no documented counters



Counter Selection (cont’d)

e Alltestsrunon
o Intel Xeon E5-2667 v3 (Haswell)

o Intel Corei5-3210M (lvybridge)
e Results will differ on other microarchitectures



Counters of Interest

 Dataset 1:
« event_id=0xef, umask=0xf4
« event_id=0x4d, umask=0xe3
« event_id=0x36, umask=06x98

« Dataset 2 (not covering due to time constraints):
e event_id=0xef,umask=0xf4
e event_id=0x4d, umask=0xb1
e event_id=0xd5, umask=0xa6



Over to Harini



Using Undocumented Counters



Exploits of Interest

Meltdown (aka Spectre v3 - rogue data cache load)

Spectre v1 (bounds check bypass)

Spectre v2 (branch target injection)

Spectre v4 (speculative store bypass)

Ghosting_spectrev4 (speculative store with evasive changes)
Return-Oriented Programming (ROP)



Data Collection

Using Linux perf counters
Along with the exploits mentioned before, collected data for the
following baseline programs:
o LibJIT unit tests
o Scikit-learn benchmark tests
o Phoronix-nginx test suite
o Linux defconfig compile
Selected counters were measured every 100ms
Each program was run five times
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Model Metrics Calculated

Precision

Recall

F1-score

False Positive Rate (FPR)
False Negative Rate (FNR)
Area Under the Curve (AUC)
Test Accuracy

Confusion Matrix



What Do These Mean?
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Algorithms used

Support Vector Machine

Random Forest

eXtreme Gradient Boosting (XGBoost)
Histogram based Gradient Boosting (HGBoost)



Support Vector Machine

SVC with linear kernel LinearSVC (linear kernel)

o

o

SVC with polynomial (degree 3) kernel
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eXtreme Gradient Boosting (uses Boosting)
e Builds on weak

classifiers (high

@ @ @ bias, low variance)
\@ @/ e Add a classifier
(tree) at a time, so
— — that next classifier is
trained to improve

the already trained
\@ @ ensemble

Decision
Tree 2

Bagging: Parallel tree growing with subsamples

@9 %

Decision Decision Decision
E3




Histogram based Gradient Boosting

« Afaster implementation gradient boosting classifier when no. of
samples is higher

* |t bins input samples into integer-valued bins (typically 256 bins)
which reduces the no. of splitting points to consider

« Allows the algorithm to leverage integer-based data structures

(histograms) instead of relying on sorted continuous values when
building the trees



Detecting Spectre (Again)



Model results
Features: 36-98, 4d-e3, ef-f4

F1 F2 F3 |intel_arch| model |precision|recall| fpr far | auc | acc [ meltdown | spectre1 | spectre2 | spectre4 |spectre4_new
36_98 |4d_e3|ef_f4| ivybridge SVM 1 0.85 0 0.3 |0.85]| 0.99 no no no yes yes
36 98 (4d_e3|ef_f4| ivybridge | XGBoost 0.98 0.94 ({0.0004 [ 0.12 | 0.94 | 0.99 yes yes yes yes yes
36_98|4d_e3 |ef_f4| ivybridge RF 1 0.86 0 0.28 [0.86| 0.99 yes no no yes yes
36_98 |4d_e3 |ef_f4| ivybridge | HGBoost 0.98 0.94 | 0.0004 | 0.112 [ 0.94 | 0.99 yes yes no yes yes
36_98|4d_e3|ef_f4| haswell SVM 0.98 0.93 | 0.0005| 0.13 [0.94| 0.99 yes no no yes yes
36_98 |4d_e3|ef_f4| haswell | XGBoost 0.99 0.98 | 0.0004 | 0.04 [0.98| 0.99 yes yes yes yes yes
36_98|4d_e3|ef_f4| haswell RF 1 0.97 | 0.0001 | 0.06 [0.97| 0.99 yes no no yes yes
36_98 |4d_e3|ef_f4| haswell | HGBoost 0.98 0.98 | 0.0008 | 0.04 [0.98| 0.99 yes yes yes yes yes




Best feature set and model

» Dataset 1 with with features 36-98, 4d-e3, ef-f4 perform the best
 XGBoost is the best model so far

« 99% precision

o 98% recall

 0.04% FPR

o 4% FNR

« 98% AUC
« Note: Here the FNR denotes the part of exploit(s) that’s missed,

the model itself caught most parts of all exploits



XGBoost AUC for test and hold-out dataset

Train accuracy: 0.9998672022841207 Train accuracy: 0.9998672022841207

Test accuracy: 0.9988542158118218 Test accuracy: 0.9999321435841759

AUC: 0.9794988379651749 AUC: 0.9965928449744463

False Positive Rate: 0.00041191816559110257 False Positive Rate: 0.0

False Negative Rate: 0.04059040590405904 False Negative Rate: 0.0068143100511073255

ROC curve ROC curve

=3
o
=)
o

e positive rate
e positive rate

Trus
o
=

Trus
o
-

— Features: pc_36_98, pc_4d_e3, pc_ef f4 — Features: pc_36_98, pc_4d_e3, pc_ef_f4

04 06 04 06
False positive rate False positive rate

precision recall fl-score support precision recall fl-score support

1.00 14566 . . .00 58361
0.97 271 . . .00 587

accuracy 14837 accuracy . 58948
macro avg 3 2 : 14837 _macro avg . . . 58948
weighted avg . i 14837 weighted avg . . . 58948




XGBoost Normalized Confusion Matrices

XGBoost Normalized confusion matrix XGBoost-holdout Normalized confusion matrix
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SHAP model interpretation

SHapley Additive exPlanation (Lundberg, et al)

Based on Shapely values, a technique used in game theory to
determine how much each player in a collaborative game has
contributed to its success

Each SHAP value measures how much each feature in our model
contributes to the prediction, either positively or negatively



XGBoost Feature Importance

pc_4d_e3

pc_36_98

I I I I | [
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mean(|SHAP value|) (average impact on model output magnitude)



XGBoost Partial Dependence Plot

Shows the marginal effect that one or two variables have on the predicted
outcome.

Whether the relationship between the target and the variable is linear,
monotonic, or more complex

Let’s see the partial dependence plots for each of the three features



SHAP value for

pc_ef fa4

XGBoost Partial Dependence Plot (cont’d)
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e Plot shows SHAP values for ef-f4
clearly influencing extremely
negatively, helping the model
classify the baseline data
correctly.

e There is some interaction with
feature 36-98 where it’'s values
are between 10k-30k



SHAP value for
pc_4d_e3

XGBoost Partial Dependence Plot (cont’d)

T e Partial dependence plot for feature
' 4d-e3 shows there is an
- approximately linear and positive
trend between 4d-e3 and the target
variable
e It clearly doesn’t react with any other
feature
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SHAP value for

pc_36_98

XGBoost Partial Dependence Plot (cont’d)
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Plot 2 shows SHAP values for
36-98, significant impact can be
seen for the highest and the
lowest values of the feature.

There is some interaction with
feature 4d-e3 for the values
around 75k-300k



SHAP Force plots
How each feature pushes the prediction to 1/0

higher & lower




SHAP Force plot for ef-f4




SHAP Force plot for 4d-e3




SHAP Force plot for 36-98




Over to Ghost



Detecting Other Exploits



Detecting ROP

e Prior work
o Last Branch Records (LBR) / Processor Trace (PT)
m Sampling throughput/overhead
o Branch mispredicts
m ROP chains make the processor’s return stack buffer
EES
m Problem: ROP chains are short
e 50-100 gadgets at most
e Gives aweaksignal



Data Collection

« Ranthe ROP exploit 100x in our experiments to maximize signal
« Added a new baseline program: exec-only
» Executes the same shell as the ROP exploit, but without ROP
« Used to ensure that we're picking up the ROP itself, not a side
effect of the shell creation



Detecting ROP (cont’'d)

e Same counters work?!?

.



HGBoost AUC and confusion matrix

Train accuracy: 0.9999046448550601

Test accuracy: 0.9998494235071417

AUC: 0.8846046231328827

False Positive Rate: 2.1522965003658902e-05
False Negative Rate: 0.23076923076923078

ROC curve

— Features: pc_36_98, pc_4d_e3, pc_ef f4
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Interpretation
Warning: speculation ahead



Interpretation - Spectre & co.

A single support file in Intel VTune names the OXEF event_id as
“CORE_SNOOP_RESPONSE”

o Description: “tbd” - thanks Intel

o Supposedly only for SKL-X and Cascade Lake...
Hypothesis: counter is detecting the responses from other cores
when CLFLUSH invalidates cache lines
Counters showed “malicious” even when the cache sampling was
broken

o Supports the theory that this is measuring cache evictions

instead of sampling



Interpretation - ROP

e \eryunsure.
e Detecting the embedded stack pivot?
o Invalidation/flushing of store buffers for the stack?
e Indirectly detecting the RSB mispredicts?
o Caches loading based on RSB but all returns don't go to
expected location



Future Work



Future Work

Generalizing/automating data collection
o Collecting data on a broader set of microarchitectures and
analyzing differences

Other PMUs (uncore counters on Intel chips could be promising)
Non-Intel x86 (AMD)

ARM
o Potentially interesting vendor-specific internals?



Closing Remarks

Due to the nature of things being undocumented, we don't know
what the counters in this talk actually measure
Please let us know if you have any ideas/knowledge/experiments

that could help determine those
Or the chip manufacturers could release more documentation :)



Q&A



Resources



Resources

® https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Pe
rformance-Counters-CPU-Hardware-Performance-Counters-For-Security.pdf



https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-CPU-Hardware-Performance-Counters-For-Security.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-CPU-Hardware-Performance-Counters-For-Security.pdf
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Appendix



Model results

Features: 4d-b1, d5-aé, ef-f4

F1 F2 F3 |intel_arch| model |precision|recall| fpr fnr auc | acc | meltdown | spectre1 [spectre2|spectre4| spectre4_new
4d b1| d5 a6 | ef_f4 | ivybridge SVM 0.99 0.81 [0.0002| 0.37 | 0.81 | 0.99 yes no no yes yes
4d b1| d5 a6 | ef_f4 | ivybridge | XGBoost 0.98 0.88 [0.0005| 0.25 | 0.88 | 0.99 yes yes yes yes yes
4d b1| d5 a6 | ef_f4 | ivybridge RF 0.99 0.86 |0.0002| 0.28 | 0.86 | 0.99 yes yes no yes yes
4d_b1| d5_ab | ef_f4 | ivybridge | HGBoost 0.98 0.87 [0.0006| 0.26 | 0.87 | 0.99 yes yes yes yes yes
4d_b1| d5_a6 | ef_f4 | haswell SVM 1 0.93 [0.0001| 0.13 | 0.93 | 0.99 yes no no yes yes
4d b1| d5 a6 | ef_f4 | haswell | XGBoost 0.99 0.97 [0.0003| 0.06 | 0.97 | 0.99 yes yes no yes yes
4d_b1| d5_ab6 | ef_f4 | haswell RF 0.99 0.95 (0.0002| 0.1 0.95 [ 0.99 yes no no yes yes
4d b1| d5 a6 | ef_f4 | haswell | HGBoost 0.99 0.97 [0.0002| 0.056 | 0.97 | 0.99 yes yes yes yes yes




